Physical Property Correlations for Conjugated
 Aliphatic Nitro-olefins

Refractive Index, Density, and Boiling Point

KENNETH F. LAMPE, THOMAS J. MENDE, and ALFRED P. MILLS
Departments of Pharmacology and Chemistry, University of Miami, Coral Gables, Fla.

Tvarious physical properties has been determined. The boiling points at 10 mm . and the refractive indices and densities at $30^{\circ}, 40^{\circ}$, and $60^{\circ} \mathrm{C}$. were measured for a series of 21 conjugated linear nitro-olefins having straight-chain alkyl groups ranging from methyl to hexyl substituted on each carbon of nitroethylene. From this, in conjunction with selected literature values, equations are developed which correlate structure with boiling point, molar volume, density, refractive index, molar refraction, dispersion, Abbe number, n - d intercept, and refractive index and densitytemperature coefficients.

Although a number of compounds containing a conjugated nitro-olefin group have been reported in the literature, only boiling points, refractive indices, or densities have been measured, and virtually no attempt has been made to correlate these properties with the structures of these compounds.

In addition to the compounds measured in this research, literature values from the following were utilized in developing the correlations.

Compd. No.	Compd. Name	Compd. No.	Compd. Name
22 N	Nitroethylene	354	4-Methyl-3-nitro-2-pentene
23 1-1	1-Nitropropene	36	2,3-Dimethyl-1-nitro- 1-butene
24 2-	2-Nitropropene	371	1-Nitro-1-heptene
25 1	1-Nitro-1-butene	382	2-Nitro-1-heptene
26	2-Nitro-1-butene	395	5-Methyl-3-nitro-3-hexene
27 2	2-Methyl-1-nitro-1-propene	401	1-Nitro-1-octene
28 1-	1-Nitro-1-pentene	412	2-Methyl-3-nitro-3-heptene
29 2-	2-Nitro-1-pentene	42	4-Ethyl-2-nitro-2-hexene
30 3-1	3-Methyl-1-nitro-1-butene	435	5-Ethyl-3-nitro-3-heptene
31 1-	1-Nitro-1-hexene	443	3-Nitro-3-decane
32 2-	2-Nitro-1-hexene	454	4-Ethyl-3-nitro-2-Octene
33 4-	4-Methyl-1-nitro-1-pentene	465	5-Ethyl-3-nitro-3-nonene
34 4	4-Methyl-2-nitro-2-pentene		

RESULTS AND DISCUSSION

Boiling Points. The equation of Egloff, Sherman, and Dull (8) was chosen as the basis for correlating the boiling points of the nitro-olefins. For the structure $\mathrm{R}_{A} \mathrm{R}_{\mathrm{C}} \mathrm{C}=\mathrm{C}\left(\mathrm{NO}_{2}\right) \mathrm{R}_{\mathrm{B}}$,

$$
\begin{equation*}
b_{10}=A \log (n+4.4)+B \tag{1}
\end{equation*}
$$

where $n=$ number of C atoms, was utilized for $R_{A}>$ ethyl, $R_{B}>$ ethyl, and $R_{C}=H$. The following constants were obtained by fitting the $b_{10 \text { 's }}$ of the 21 compounds listed in Table I by the method of least squares: $A=362.1, B=$ -301.4 , corr. $\left(\mathrm{R}_{\mathrm{A}}=\mathrm{Me}\right)=+4.8^{\circ}$, corr. $\left(\mathrm{R}_{\mathrm{A}}=\mathrm{Et}\right)=+1.4^{\circ}$, corr. $\left(\mathrm{R}_{\mathrm{B}}=\mathrm{Me}\right)=+10.5^{\circ}$, corr. $\left(\mathrm{R}_{\mathrm{B}}=\mathrm{Et}\right)=+2.5^{\circ}$. This equation, with correction constants, fits the values in Table I with a $50^{\circ} \%$ probable error of 0.7°.

The system of Cragoe, Hass, and Newton (31) was chosen for the estimation of boiling points at other pressures. Fits of available data on nitro-olefins indicate a class between group 3 and group 4, represented by the equation

$$
\begin{equation*}
\Phi=4.90+0.00216 b_{700} \tag{2}
\end{equation*}
$$

This equation in conjunction with the equation

$$
\begin{equation*}
T_{p} / T_{700}=[\Phi+0.15 \log (760 / P)] /[\Phi+1.15 \log (760 / P)] \tag{3}
\end{equation*}
$$

where T_{p} and $T_{780}=$ b.p.'s (${ }^{\circ} \mathrm{K}$.) at $P \mathrm{~mm}$. and 760 mm ., respectively, allows the estimation of b_{780} 's and b_{10} 's from literature data at other pressures. The following additional correction constants were calculated using literature data converted to b_{10} : corr. $\left(\mathrm{R}_{\mathrm{B}}=\mathrm{H}\right)=+18.2^{\circ}$ (from compounds $23,25,28$, and 40), corr. $\left(R_{A}=H\right)=-9.1^{\circ}$ (from compounds $22,24,26,29$, and 38), corr. (R_{A} or $\mathrm{R}_{\mathrm{B}}=$ secondary alkyl group) $=-9.4^{\circ}$ (from compounds $30,34,35$, and 41), and corr. $\left(\mathrm{R}_{\mathrm{C}}=\mathrm{Me}\right)=-3.7^{\circ}$ (from compounds 27 and 36). Only boiling points at pressures above 5 mm . were considered.

		$\underset{\sim}{\mathcal{O}} \underset{\sim}{\mathbb{N}} \underset{\sim}{\infty} \underset{\sim}{\infty}$	$\underset{\sim}{9}$	ボ心が	ボ	স্ণী	$\underset{\sim}{N}$
$\frac{\stackrel{3}{4}}{\stackrel{3}{4}}$	¢ ¢ ¢ ¢						＋
\bigcirc							
$\stackrel{N}{\sim}$							
$\underset{\sim}{\circ}$							
A						$\begin{aligned} & 9.0 \\ & \dot{\theta} \dot{\theta} \dot{\theta} \dot{\theta} \end{aligned}$	$\begin{aligned} & 0.0 \\ & \text { ono } \\ & 0.0 \end{aligned}$
$\begin{aligned} & \text { 荷 } \\ & \text { Z } \end{aligned}$					E0 ed ed ed		
$\begin{aligned} & \text { B } \\ & \text { B } \\ & 0 \end{aligned}$							
送	－Nm	サレ50	$\sim \infty$	ㅋN	のゴ心	ペーロ	¢丅⿵冂⿰入入入

Table I．Physical Properties and Analyses

The calculations and results are summarized in Table II.
Molar Volume and Density. The molar volume equation of Li and others (17) was modified by replacing m, the number of carbons in the normal alkyl chains, by n, the total number of carbons. For the structure $\mathrm{R}_{\mathrm{A}} \mathrm{R}_{\mathrm{C}} \mathrm{C}=\mathrm{C}\left(\mathrm{NO}_{2}\right) \mathrm{R}$ the equation

$$
\begin{equation*}
V_{2 \mathrm{~s}}(\text { ml. per mole })=A+16.484 n+B / n+C / n^{2} \tag{4}
\end{equation*}
$$

was utilized for $n>3, R_{A}>$ ethyl, $R_{B}>$ ethyl, and $R_{C}=$ H . The following constants were obtained by fitting the V_{25} 's of the 21 compounds listed in Table I by the method of least squares: $A=42.55, B=-94.40, C=198.78$, corr. $\left(\mathrm{R}_{\mathrm{A}}=\mathrm{Me}\right)=-0.24$, corr. $\left(\mathrm{R}_{\mathrm{A}}=\mathrm{Et}\right)=+0.67$, corr. $\left(R_{B}=M e\right)=+0.17$, corr. $\left(R_{B}=E t\right)=+0.30$. This equation, with correction constants, fits the V_{25} 's of the 21 compounds with a 50% probable error of 0.21 ml . per mole.
$\Delta \mathrm{d} / \Delta t$ varied nearly linearly with density, giving, by least squares fit,

$$
\begin{equation*}
\Delta \mathrm{d} / \Delta t=0.001136-0.002110 \mathrm{~d}_{4}^{25} \tag{5}
\end{equation*}
$$

This equation fitted the experimental values of $\Delta \mathrm{d} / \Delta t$ with a 50% probable error of 9×10^{-6}. It is equivalent to

$$
\begin{equation*}
\mathrm{d}_{4}^{\mathrm{t}}=1.0528 \mathrm{~d}_{4}^{25}-0.0284+\left(0.001136-0.002110 \mathrm{~d}_{4}^{25}\right) t \tag{6}
\end{equation*}
$$

Densities at $30^{\circ}, 40^{\circ}$, and $60^{\circ} \mathrm{C}$. calculated by a combination of Equations 4 and 6 fit the experimental data for the 21 compounds with a 50% probable error of 0.0015 . The calculations and results are summarized in Table III.
The following approximate correction values based on literature data were calculated: corr. $\left(\mathrm{R}_{\mathrm{B}}=\mathrm{H}\right)=+1.6$ (from compounds 25, 28, and 40), corr. ($\mathrm{R}_{\mathrm{A}}=\mathrm{H}$) $=+2.3$ (from 26), corr. $\left(\mathrm{R}_{\mathrm{C}}=\mathrm{Me}\right)=-1.2$ (from compound 27), and corr. $\left(\mathrm{R}_{\mathrm{A}}\right.$ or $\mathrm{R}_{\mathrm{B}}=$ sec-alkyl group) $=-1.7$ (from compounds $39,42,43,45$, and 46). There are some major inconsistencies in the literature data. Further experimental work is being carried out in this area.

A formula of the type used in Equation 4 should not be used for extrapolations to values of n less than the smallest value used in the least squares fit. Moderate extrapolation for higher values of n may prove satisfactory.

The calculations and results are summarized in Table III.
Refractive Index and Dispersion. One moderately satisfactory method of estimating the refractive index at $25^{\circ} \mathrm{C}$. is through the additivity of group $M n^{25} \mathrm{D}$'s. For the series $\mathrm{R}_{\mathrm{A}} \mathrm{R}_{\mathrm{C}} \mathrm{C}=\mathrm{C}\left(\mathrm{NO}_{2}\right) \mathrm{R}_{\mathrm{B}}$ the following group contributions were obtained by fitting the $M n^{2 s} \mathrm{D}$'s of the 21 compounds listed in Table I by the method of least squares: $\mathrm{CH}=\mathrm{C}\left(\mathrm{NO}_{2}\right)$ $123.43, \mathrm{R}_{\mathrm{A}}=\mathrm{Me} 11.64, \mathrm{R}_{\mathrm{B}}=\mathrm{Me} 11.95, \mathrm{R}_{\mathrm{A}}=\mathrm{Et} 31.87$, $\mathrm{R}_{\mathrm{B}}=\mathrm{Et} 32.21, \operatorname{Pr} 53.00$, Bu 73.35, Am 93.45, and Hx 113.94. The n^{25} 's estimated by this method fitted the $n^{25} \mathrm{D}$'s of the 21 compounds with a 50% probable error of 0.9016 . The alkyl group contributions obtained above may be compared to the following values of Vogel (28) (converted to $25^{\circ} \mathrm{C}$.) : Me 11.67, Et 32.94, Pr 52.74, Bu 73.28, Am 93.90, and Hx 114.52.
The following approximate group $M n^{25} D_{D}$ contributions based on literature data were calculated: $\mathrm{R}_{\mathrm{B}}=\mathrm{H}-8.8$ (from compounds 23, 25, 31, 37, and 40), $\mathrm{R}_{\mathrm{A}}=\mathrm{H}-10.7$ (from compounds 24, 26, and 32), and $\mathrm{R}_{\mathrm{C}}=\mathrm{Me} 22.3$ (from compounds 27 and 36). For methyl branching on the alkyl group (R_{A} or R_{B}) subtract 0.8 (from compounds $30,33,34$, 35,39 , and 40); for ethyl branching on the α-carbon of the alkyl group (R_{A} or R_{B}) add 1.1 (from compounds 42, 43, 45, and 46). There are some major inconsistencies in the literature data. Further experimental work is being carried out in this area.
$\Delta n_{\mathrm{D}} / \Delta t$ was found to vary nearly linearly with $M n^{25} \mathrm{D}$, and with n, the number of carbons, giving, by least squares fit,

$$
\begin{equation*}
\Delta n_{\mathrm{D}} / \Delta t=-5.58 \times 10^{-4}+5.22 \times 10^{-7} \mathrm{Mn}^{22} \mathrm{D} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta n_{\mathrm{D}} / \Delta t=-5.17 \times 10^{-4}+9.7 \times 10^{-6} n \tag{8}
\end{equation*}
$$

Table II. Boiling Points of Conjugated Nitro-Olefins

Compd., No.	Lit. Values, ${ }^{\circ} \mathrm{C}$.	Lit. Ref.	$b_{10},{ }^{\circ} \mathrm{C}$.		$\begin{gathered} \Delta b_{10}, \\ \text { Obsd. }- \text { Eq. } \end{gathered}$
			Obsd.	Eq.	
1		TR ${ }^{\text {a }}$	49.1	487	+0.4
	$b_{30}, 70.4$	(11)	49.0	48.7	+0.3
	$b_{15}, 55.5$	(15)	48.0	48.7	-0.7
	$b_{9}, 47-50$	(3)	50.3	48.7	+1.6
	$b_{30}, 70$	(13)	48.6	48.7	-0.1
2		TR	64.4	62.9	+1.5
3		TR	59.3	58.3	+1.0
	$b_{10}, 57.8$	(11)	57.8	58.3	-0.5
	$b_{10}, 58$	(13)	58.0	58.3	-0.3
4		TR	75.6	77.4	-1.8
	$b_{10}, 82.3$	(11)	82.3	77.4	+4.9
	$b_{10}, 82$	(13)	82.0	77.4	+4.6
	$b_{4}, 60-2$	(21)	73.6	77.4	-3.8
5		TR	70.9	71.7	-0.8
	$b_{10}, 72$	(11)	72.0	71.7	+0.3
6		TR	70.6	70.8	-0.2
	$b_{25}, 85-7$	(21)	67.6	70.8	-3.2
7		TR	91.3	91.9	-0.6
8		TR	86.0	86.2	-0.2
9		TR	82.5	83.9	-1.4
	$b_{10}, 84.4$	(11)	84.4	83.9	+0.5
10		TR	81.5	82.7	-1.2
	$b_{5.2}, 70.0-70.8$	(25)	82.6	82.7	-0.1
11		TR	105.6	105.1	+0.5
12		TR	100.1	99.4	+0.7
13		TR	98.0	97.1	+0.9
14		TR	96.1	96.0	+0.1
15		TR	95.1	94.5	+0.5
	$b_{10}, 93.0$	(11)	93.0	94.6	-1.6
16		TR	116.9	117.3	-0.4
17		TR	110.1	111.6	-1.5
18		TR	109.0	109.3	-0.3
19		TR	108.0	108.2	-0.2
20		TR	108.7	106.8	+1.9
21		TR	107.6	106.8	+0.8
22	$b_{30}, 38-39$	(6)	0.8	-0.3	+1.1
	$b_{780}, 98.5$	(32)	2.4	-0.3	+2.7
22	$b_{10},-0.2$	(14)	-0.2	-0.3	+0.1
23	$b_{10}, 37$	(23)	37.0	36.1	+0.9
	$b_{7}, 31.0-32.5$	(28)	37.9	36.1	+1.8
24	$b_{100}, 57.0$	(11)	13.0	14.8	-1.8
	$b_{90}, 58$	(6)	16.0	14.8	+1.2
	$b_{144}, 68-70$	(3)	16.0	14.8	+1.2
	$b_{59.5}, 48-49$	(2)	15.5	14.8	+0.7
25	$b_{12}, 55$	(23)	51.6	53.0	-1.4
	$b_{12}, 57$	(5)	53.6	53.0	+0.6
26	$b_{50}, 60.5$	(11)	29.8	26.8	+3.0
	$b_{17}, 47$	(13)	37.4	26.8	+10.6
27	$b_{25}, 72$	(26)	54.2	52.7	+1.5
	$b_{18}, 64$	(4)	52.9	52.7	+0.2
	$b_{11}, 56$	(16)	54.2	52.7	+1.5
	$b_{9.5}, 48-49$	(3)	49.4	52.7	-3.3
	$b_{11}, 55-56$	(13)	53.7	52.7	+1.0
28	$b_{9}, 66.5$	(5)	68.5	69.2	-0.7
	$b_{12}, 69-70$	(23)	66.1	69.2	-3.1
	$b_{12}, 69-70$	(13)	66.1	69.2	-3.1
2930	$b_{20}, 58$	(11)	41.1	41.9	-0.8
	$b_{50}, 58$	(1)	36.7	41.9	-5.2
30	$b_{23}, 75$	(13)	58.7	59.8	-1.1
32	$b_{50}, 81-2$	(13)	49.1	57.8	-8.7
33	$b_{12}, 81-2$	(1)	78.0	85.1	-7.1
34	$b_{10}, 67$	(13)	67.0	70.6	-3.6
35	$b_{10}, 64$	(11)	64.0	62.3	+1.7
36	$b_{10}, 76.0-6.2$	(5)	76.1	73.6	+2.5
38	$b_{30}, 93.5$	(1)	70.9	72.3	-1.4
40	$b_{9}, 112$	(23)	114.2	112.8	+1.4
41	$b_{10}, 85.5$	(11)	85.5	85.2	+0.3

${ }^{a}$ This research.

Equations 7 and 8 fitted the experimental values of $\Delta n_{\mathrm{D}} / \Delta t$ with 50 probable errors of 0.05×10^{-4} and $0.05 \times$ 10^{-4}, respectively.

The dispersion ($n_{F}-n_{C}$) was found to vary nearly linearly with $M n^{25} \mathrm{D}$, and with n, the number of carbons, giving, by least squares fit,

$$
\begin{equation*}
n_{F}-n_{C}=0.0208-3.2 \times 10^{5} M n^{25} \mathrm{D} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{F}-n_{C}=0.0188-6.5 \times 10^{-4} n \tag{10}
\end{equation*}
$$

Compd., No.	$-\Delta \mathrm{d} / \Delta t \times 10^{4}$		$\begin{aligned} & \text { Obsd.-Eq. } \\ & \times 10^{4} \end{aligned}$	$\begin{gathered} V_{25}, \\ \text { Eq. } 4 \end{gathered}$	$\begin{aligned} & \mathrm{d}_{4}^{25} \\ & \text { Eqs. } \end{aligned}$	Lit. Ref.		d_{4}^{t}		Δd_{4}, Obsd. - Eq. or Lit. - Eq.	
								Obsd. or			
	Eq. 5	Obsd.					$t,{ }^{\circ} \mathrm{C}$.	Eq. 6	lit.		
1	10.64	10.57		-0.07	97.11	1.0411	TR	30.0	1.0358	1.0374	+0.0016
				97.11	1.0411	(11)	25.0	1.0411	1.0429	+0.0018	
2	9.79	10.00	+0.21	114.77	1.0032	TR	30.0	0.9983	0.9972	-0.0011	
3	9.91	9.90	-0.01	114.00	1.0100	TR	30.0	1.0050	1.0031	-0.0019	
				114.00	1.0100	(11)	25.0	1.0100	1.0069	-0.0031	
4	9.40	9.30	-0.10	131.32	0.9836	TR	30.0	0.9789	0.9798	+0.0009	
				131.32	0.9836	(11)	25.0	0.9836	0.9824	-0.0012	
				131.32	0.9836	(19)	25.0	0.9836	0.9883	+0.0047	
5	9.41	9.35	-0.06	130.92	0.9866	TR	30.0	0.9819	0.9797	-0.0022	
				130.92	0.9866	(1I)	25.0	0.9866	0.9833	-0.0033	
6	9.29	9.27	-0.02	132.12	0.9776	TR	30.0	0.9730	0.9739	+0.0009	
				132.12	0.9776	(19)	25.0	0.9776	0.9785	+0.0009	
7	8.98	8.76	-0.22	148.60	0.9636	TR	30.0	0.9591	0.9598	+0.0007	
8	9.05	8.93	-0.22	148.20	0.9662	TR	30.0	0.9617	0.9631	+0.0014	
9	8.92	9.17	+0.25	148.73	0.9628	TR	30.0	0.9583	0.9568	-0.0015	
				148.73	0.9628	(11)	25.0	0.9628	0.9628	0.0000	
10	8.93	9.10	+0.17	149.10	0.9604	TR	30.0	0.9560	0.9572	+0.0012	
11	8.67	8.68	+0.01	165.83	0.9481	TR	30.0	0.9438	0.9449	+0.0011	
12	8.67	8.54	-0.13	165.42	0.9504	TR	30.0	0.9461	0.9452	-0.0009	
13	8.68	8.60	-0.08	165.96	0.9473	TR	30.0	0.9430	0.9460	$+0.0030$	
14	8.59	8.61	+0.02	166.33	0.9452	TR	30.0	0.9409	0.9412	+0.0003	
15	8.67	8.75	+0.08	165.66	0.9491	TR	30.0	0.9448	0.9451	+0.0003	
				165.66	0.9491	(11)	25.0	0.9491	0.9484	-0.0007	
16	8.35	8.29	-0.06	182.98	0.9358	TR	30.0	0.9316	0.9298	-0.0018	
17	8.47	8.27	-0.20	182.57	0.9379	TR	30.0	0.9337	0.9357	+0.0020	
18	8.36	8.25	-0.11	183.11	0.9352	TR	30.0	0.9310	0.9303	-0.0007	
19	8.25	8.36	+0.11	183.48	0.9333	TR	30.0	0.9291	0.9269	-0.0022	
20	8.43	8.52	+0.09	182.72	0.9372	TR	30.0	0.9330	0.9338	+0.0008	
21	8.36	8.44	+0.08	182.72	0.9372	TR	30.0	0.9330	0.9305	-0.0025	
25	99.45	1.0167	(23)	20.0	1.0217	1.0251	+0.0034	
26		99.78	1.0133	(22)	20.0	1.0183	1.0188	$+0.0005$	
27	. .	\cdots		97.34	1.0387	(26)	20.0	1.0440	1.0438	-0.0002	
28		.	\cdots	115.54	0.9965	(23)	20.0	1.0013	0.9952	-0,0061	
34	129.62	0.9965	(11)	25.0	0.9965	0.9780	-0.0185	
37		.	.	150.04	0.9543	(19)	25.0	0.9543	0.9743	+0.0200	
39	\cdots	. .		147.04	0.9738	(19)	25.0	0.9738	0.9741	+0.0003	
40			\cdots	167.26	0.9400	(23)	20.0	0.9442	0.9476	+0.0034	
42				164.13	0.9579	(19)	25.0	0.9579	0.9551	-0.0028	
43				181.41	0.9439	(19)	25.0	0.9439	0.9427	-0.0012	
44				200.18	0.9255	(19)	25.0	0.9255	0.9235	-0.0020	
45				198.35	0.9341	(19)	25.0	0.9341	0.9343	+0.0002	
46	...	\cdots	\ldots	215.49	0.9249	(19)	25.0	0.9249	0.9273	+0.0024	

Equations 9 and 10 both fitted the experimental values of $n_{F}-n_{C}$ with a 50% probable error of 4×10^{-4}.
The calculations and results are summarized in Table IV.
Molar Refraction. By using Vogel's (29) values of bond and group refractions at 20° (Me 5.00 , Et 9.65, $\operatorname{Pr} 14.32$, Bu 18.94, Am 23.60, Hx 28.21, C-H 1.676, C-C 1.296), an average value of 12.19 for the group ($\mathrm{C}=\mathrm{C}-\mathrm{NO}_{2}$) was obtained. This yields an "exhaltation" of 0.67 as compared to the group value obtained from $\mathrm{NO}_{2} 5.78$ (calculated from Vogel's values for seven nitroalkanes), $\mathrm{C}=\mathrm{C} 4.17$ and $\mathrm{C}-\mathrm{N}$ 1.57. The molar refractions estimated by this method fitted the molar refractions of the 21 compounds with a 50% probable error of 0.11 .
The molar refractions of these compounds were found to increase an average of 0.0076% per degree.
The equation of Kurtz and Ward (14), $n_{\mathrm{D}}=(\mathrm{d} / 2)+b$, was examined. The b term was found to vary appreciably over the series and was fitted by least squares to the equations

$$
\begin{equation*}
b=a+[c /(n+1)] \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
b=\left[a c^{n}\right]^{1 / n+1)} \tag{12}
\end{equation*}
$$

where n is the number of carbons. These yielded the over-all equations

$$
\begin{equation*}
n^{25} \mathrm{D}=\frac{\mathrm{d}_{4}^{25}}{2}+1.0432-\frac{0.549}{n+1} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
n^{x_{\mathrm{D}}}=\frac{\mathrm{d}_{s}^{\mathrm{S}}}{2}+\left[(0.6035)(1.0436)^{n}\right]^{1 /(\mathrm{n}+1)} \tag{14}
\end{equation*}
$$

For both of these equations, n^{25} 's calculated from experimental $d_{4}^{25 s}$ s fitted the experimental $n^{25} \mathrm{D}$'s of the 21 compounds with a 50% probable error of 0.0014 . This is the same as the probable error obtained for n^{25} D's calculated by using the molar refractions.
These calculations and results are summarized in Table V , along with similar calculations using literature data.

The ratio of $\Delta \mathrm{d} / \Delta t$ to $\left(\Delta n_{\mathrm{D}} / \Delta t\right)^{2}$ was found to be constant and equal to -4.52×10^{3} with a 50 probable error of 0.09×10^{3}. Combining this result with Equation 8 gives

$$
\begin{equation*}
\Delta \mathrm{d} / \Delta n_{\mathrm{D}}=2.34-0.044 n \tag{15}
\end{equation*}
$$

where n is the number of carbon atoms. This may be compared to the constant value of 1.67 for $\Delta \mathrm{d} / \Delta n_{\mathrm{D}}$ estimated by Ward and Kurtz (30).
The "Abbe number," $\nu=\left(n_{\mathrm{D}}-1\right) /\left(n_{F}-n_{C}\right)$, ranged from 27.0 to 36.7 , about the same range as for the conjugated dienes, but well below that for either the unconjugated dienes or nitroalkanes, each of which range upward from about 40 . The Abbe number was fitted by least squares to the following equations:

$$
\begin{align*}
& \nu=22.2+1.45 n \tag{16}\\
& \nu=42.8-\frac{80.6}{n+1} \tag{17}
\end{align*}
$$

and

These two equations fitted the experimental v 's equally well with a 500_{c}° probable error of 0.7 . For extrapolation to higher values of $n(>9)$ use Equation 17; for extrapolation to lower values of $n(<4)$ use Equation 16.

Results are summarized in Table VI.

Table IV. Refractive Indices and Dispersions of Nitro-olefins

Table V. Molar Refraction and n-d Intercept

Compd., No.	Lit. Ref.	$\begin{gathered} n^{25} \mathrm{D}^{a} \\ \text { Obsd. } \end{gathered}$	$\begin{gathered} \mathrm{d}_{4}^{2 a_{0}} \\ \text { Obsd. } \end{gathered}$	$R^{25} \mathrm{D}$		$\begin{gathered} \Delta R^{25} \mathrm{D} \\ \text { Obsd. - } \\ \text { Est. } \end{gathered}$	b			$n^{25} \mathrm{D}$	
				Obsd.	Est..		Obsd.	Eq. 11	Eq. 12	Eq. 13	Eq. 14
1	TR	1.4569	1.0425	26.41	26.47	-0.06	0.9357	0.9334	0.9353	1.4546	1.4565
	(11)	1.4584	1.0429	26.48	26.47	+0.01	0.9370	0.9334	0.9353	1.4548	1.4567
2	TR	1.4520	1.0022	30.99	31.12	-0.13	0.9509	0.9517	0.9526	1.4528	1.4537
3	TR	1.4537	1.0081	30.91	31.12	-0.21	0.9497	0.9517	0.9526	1.4557	1.4566
	(11)	1.4590	1.0069	31.26	31.12	+0.14	0.9556	0.9517	0.9526	1.4551	1.4560
4	TR	1.4603	0.9841	35.97	35.79	+0.18	0.9683	0.9648	0.9650	1.4568	1.4570
	(11)	1.4572	0.9824	35.82	35.79	+0.03	0.9660	0.9648	0.9650	1.4560	1.4562
	(19)	1.4513	0.9883	35.21	35.79	-0.58	0.9571	0.9648	0.9650	1.4590	1.4592
5	TR	1.4568	0.9843	35.72	35.79	-0.07	0.9646	0.9648	0.9650	1.4570	1.4572
	(11)	1.4572	0.9833	35.79	35.79	0.00	0.9656	0.9648	0.9650	1.4564	1.4566
6	TR	1.4532	0.9785	35.68	35.77	-0.09	0.9640	0.9648	0.9650	1.4540	1.4542
	(19)	1.4521	0.9785	35.62	35.77	-0.15	0.9629	0.9648	0.9650	1.4540	1.4542
7	TR	1.4601	0.9641	40.69	40.42	+0.27	0.9781	0.9746	0.9745	1.4566	1.4565
8	TR	1.4550	0.9674	40.16	40.42	-0.26	0.9713	0.9746	0.9745	1.4583	1.4582
9	TR	1.4531	0.9613	40.27	40.45	-0.18	0.9725	0.9746	0.9745	1.4552	1.4551
	(11)	1.4580	0.9625	40.59	40.45	+0.14	0.9768	0.9746	0.9745	1.4558	1.4556
10	TR	1.4572	0.9618	40.56	40.45	+0.11	0.9763	0.9746	0.9745	1.4555	1.4553
11	TR	1.4579	0.9493	45.18	45.08	+0.10	0.9833	0.9822	0.9820	1.4568	1.4566
12	TR	1.4548	0.9495	44.90	45.08	-0.18	0.9800	0.9822	0.9820	1.4570	1.4568
13	TR	1.4589	0.9499	45.24	45.07	+0.17	0.9839	0.9822	0.9820	1.4572	1.4570
14	TR	1.4545	0.9455	45.07	45.07	0.00	0.9817	0.9822	0.9820	1.4550	1.4548
15	TR	1.4582	0.9494	45.20	45.11	+0.09	0.9835	0.9822	0.9820	1.4569	1.4567
	(11)	1.4593	0.9484	45.34	45.11	+0.23	0.9851	0.9822	0.9820	1.4564	1.4562
16	TR	1.4538	0.9339	49.64	49.69	-0.05	0.9868	0.9883	0.9880	1.4553	1.4550
17	TR	1.4564	0.9398	49.57	49.69	-0.12	0.9865	0.9883	0.9880	1.4582	1.4579
18	TR	1.4547	0.9344	49.70	49.73	-0.03	0.9875	0.9883	0.9880	1.4555	1.4552
19	TR	1.4510	0.9311	49.52	49.73	-0.21	0.9854	0.9883	0.9880	1.4539	1.4536
20	TR	1.4593	0.9380	49.94	49.73	+0.21	0.9903	0.9883	0.9880	1.4573	1.4570
21	TR	1.4559	0.9347	49.80	49.73	$+0.07$	0.9885	0.9883	0.9880	1.4557	1.4554
22	(14)	1.4227	1.1067	16.80	17.23	-0.43	0.8693	0.8602	0.8695	1.4136	1.4229
25	(23)	1.4508	1.0201	26.68	26.50	+0.18	0.9408	0.9334	0.9353	1.4434	1.4453
26	(22)	1.4349	1.0138	26.02	26.50	-0.48	0.9280	0.9334	0.9353	1.4403	1.4422
27	(26)	1.4686	1.0385	27.09	26.47	+0.62	0.9494	0.9334	0.9353	1.4526	1.4545
28	(23)	1.4527	0.9904	31.32	31.17	+0.15	0.9575	0.9517	0.9526	1.4469	1.4478
37	(19)	1.4524	0.9743	39.59	40.45	-0.86	0.9652	0.9746	0.9745	1.4618	1.4617
39	(19)	1.4528	0.9741	39.61	40.45	-0.84	0.9658	0.9746	0.9745	1.4616	1.4615
40	(23)	1.4574	0.9434	45.42	45.06	+0.36	0.9857	0.9822	0.9820	1.4539	1.4537
42	(19)	1.4602	0.9551	45.10	45.10	0.00	0.9826	0.9822	0.9820	1.4598	1.4596
43	(19)	1.4598	0.9427	49.73	49.76	-0.03	0.9884	0.9883	0.9880	1.4597	1.4594
44	(19)	1.4540	0.9236	54.32	54.34	-0.02	0.9922	0.9933	0.9929	1.4551	1.4547
45	(19)	1.4616	0.9343	54.47	54.41	+0.06	0.9944	0.9933	0.9929	1.4605	1.4601
46	(19)	1.4616	0.9273	59.04	59.06	-0.02	0.9979	0.9974	0.9970	1.4610	1.4606
" Observed values converted to $25^{\circ} \mathrm{C}$.											

Table VI. Abbe Number and $\Delta n-\Delta d$ Relationships

Compd $(\Delta \mathrm{d} / \Delta t) \times 10^{-3}$		$\Delta \mathrm{d} / \Delta n_{\mathrm{D}}$		ν		
No.	$\left(\Delta n_{\mathrm{D}} / \Delta t\right)^{2}$	Obsd.	Eq. 15	Obsd.	Eq. 16	Eq. 17
1	4.59	2.20	2.16	27.0	28.0	26.7
2	4.49	2.08	2.12	30.0	29.4	29.4
3	4.32	2.07	2.12	30.6	29.4	29.4
4	4.40	2.02	2.08	31.0	30.9	31.3
5	4.54	2.06	2.08	30.1	30.9	31.3
6	4.58	2.06	2.08	30.7	30.9	31.3
7	4.40	1.96	2.03	30.9	32.3	32.7
8	4.53	2.01	2.03	34.0	32.3	32.7
9	4.51	2.03	2.03	33.5	32.3	32.7
10	4.43	2.01	2.03	31.7	32.3	32.7
11	4.74	2.03	1.99	33.4	33.8	33.8
12	4.89	2.08	1.99	34.5	33.8	33.8
13	4.50	1.97	1.99	31.9	33.8	33.8
14	4.47	2.03	1.99	34.1	33.8	33.8
15	4.40	1.96	1.99	32.5	33.8	33.8
16	4.55	1.92	1.94	36.6	35.2	34.7
17	4.60	1.95	1.94	35.4	35.2	34.7
18	4.50	1.93	1.94	35.1	35.2	34.7
19	4.74	1.97	1.94	36.7	35.2	34.7
20	4.37	1.94	1.94	34.2	35.2	34.7
21	4.40	1.93	1.94	35.0	35.2	34.7
22	4.76	2.48	2.25

(21) Parham, W.E., Bleasdale, J.L., J. Am. Chem. Soc. 72, 3843 (1950).
(22) Redemann, C.E., Chaikin, S.W., Fearing, R.B., Ibid., 70, 2582 (1948)
(23) Schmidt, E., Rutz, G., Ber. 61, 2142 (1928)
(24) Seagers, W.J., Elving, P.J., J. Am. Chem. Soc. 73, 947 (1951).
(25) Shechter, H., Ley, D.E., Roberson, E.B., Jr., Ibid., 78, 4984 (1956).
(26) Shechter, H., Shepherd, J.W., Ibid., 76, 3617 (1954).
(27) Vanderbilt, B.M., Hass, H.B., Ind. Eng. Chem. 32, 34 (1940).
(28) van Tamelen, E.E., Thiede, R.J., J. Am. Chem. Soc. 74 2615 (1952).
(29) Vogel, A.I., Cresswell, W.T., Jeffery, G.H., Leicester, J., J. Chem. Soc. 1952, 518.
(30) Ward, A.L., Kurtz, S.S., Ind. Eng. Chem., Anal. Ed. 10, 559 (1938).
(31) Weissberger, A., "Technique of Organic Chemistry," vol. I, 3rd ed., pp. 499-501, Part I, Interscience, New York, 1959.
(32) Wieland, H., Sakellarios. E., Ber. 52, 898 (1919).

Received for review April 7, 1961. Accepted July 31, 1961. Southestern Regional Meeting, ACS, Gainesville, Fla., December 1958. Research supported in part by the Air Pollution Medical Program of the U.S. Public Health Service.

